Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130647, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561152

RESUMO

A constructed microbial consortia-based strategy to enhance caproic acid production from one-stage mixed-fermentation of glucose was developed, which incubated with acidogens (Clostridium sensu stricto 1, 11 dominated) and chain elongators (including Clostridium sensu stricto 12, Sporanaerobacter, and Caproiciproducens) acclimated from anaerobic sludge. Significant product upgrading toward caproic acid (8.31 g‧L-1) and improved substrate degradation was achieved, which can be greatly attributed to the lactic acid platform. Whereas, a small amount of caproic acid was observed in the control incubating with acidogens, with an average concentration of 2.09 g‧L-1. The strategy accelerated the shape and cooperation of the specific microbial community dominated by Clostridium sensu stricto and Caproiciproducens, which thereby contributed to caproic acid production via the fatty acid biosynthesis pathway. Moreover, the tailored electrodialysis with bipolar membrane enabled progressive up-concentration and acidification, allowing selective separation of caproic acid as an immiscible product with a purity of 82.58 % from the mixture.


Assuntos
Caproatos , Clostridium , Fermentação , Anaerobiose , Caproatos/metabolismo , Clostridium/metabolismo , Reatores Biológicos
2.
Bioresour Technol ; 346: 126578, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34953993

RESUMO

Agriculture bio-waste is one of the largest sectors for nutrient circulation and resource recovery. This review intends to summarize the possible scheme through coupling chemical conversion of crop straws to biochar and biological conversion of livestock waste to value-added products thus reaching key nutrient circulation. Chemical conversion of crop straws to biochar was reviewed through summarizing the preparation methods and functional modification of biochar. Then, high-solid two-phase anaerobic conversion of agriculture bio-waste to value-added products and improved performance of bio-conversion through byproduct gases reuse and biochar supplementation were reviewed. Finally, high quality compost production through amendment of biochar and residual digestate was proposed with analysis of reduced nitrogen emission and carbon balance. The biological mechanism of synergistic regulation of carbon and nitrogen loss during bio-conversion with biochar was also reviewed. This will provide a model for synergistic conversion of agricultural wastes to value added products pursuing key nutrient circulation.


Assuntos
Agricultura , Compostagem , Anaerobiose , Carbono , Carvão Vegetal , Nutrientes , Solo
3.
J Am Chem Soc ; 125(49): 15151-62, 2003 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-14653750

RESUMO

Prolonged storage ( approximately 2 years) or gentle heating (50-80 degrees C) of crystalline 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) affords a highly conducting, bromine-doped poly(3,4-ethylenedioxythiophene) (PEDOT), as confirmed by solid-state NMR, FTIR, CV, and vis-NIR spectroscopies. The novel solid-state polymerization (SSP) does not occur for 2,5-dichloro-3,4-ethylenedioxythiophene (DCEDOT), and requires a much higher temperature (>130 degrees C) for 2,5-diiodo-3,4-ethylenedioxythiophene (DIEDOT). X-ray structural analysis of the above dihalothiophenes reveals short Hal.Hal distances between adjacent molecules in DBEDOT and DIEDOT, but not in DCEDOT. The polymerization may also occur in the melt but is significantly slower and leads to poorly conductive material. Detailed studies of the reaction were performed using ESR, DSC, microscopy, and gravimetric analyses. SSP starts on crystal defect sites; it is exothermic by 14 kcal/mol and requires activation energy of approximately 26 kcal/mol (for DBEDOT). The temperature dependence of the conductivity of SSP-PEDOT (sigma(rt) = 20-80 S/cm) reveals a slight thermal activation. It can be further increased by a factor of 2 by doping with iodine. Using this approach, thin films of PEDOT with conductivity as high as 20 S/cm were fabricated on insulating flexible plastic surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...